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NOMENCLATURE 

radius of tube; 

coeflicients of harmonic terms in Fourier series 

expansion ; 
diameter of tube ; 
thermal conductivity ; 
local Nusselt number = qd/K(t, - t,); 
P&cl& number = Cd/u; 
heat flux at the wall ; 
average heat flux at the wall : 
radial co-ordinate; 

non-dimensional radial distance = r/a; 

Reynolds number = Ed/v ; 
temperature of fluid ; 
non-dimensional temperature = K(t - ti)/@; 
inlet and wall temperature ; 
bulk mean temperature ; 
average and axial component of velocity ; 
axial co-ordinate; 

non-dimensional axial distance = ax/2iia2 ; 
thermal diffusivity ; 
kinematic viscosity ; 
circumferential co-ordinate. 

INTRODUCTION 

A LIMITED number of papers are available recently to study 
the asymptotic behaviour of temperature solution for flow 

through channels having variable heat flux at the boundary 

wall. Reynolds [ 11 found the effect of variable circumferential 

heat flux to be quite significant for turbulent flow in a circular 

tube. Sutherland and Kays [2] investigated similar problem 

for annulus geometry considering both laminar and turbu- 

lent flow. This again was solved only for fully developed 

velocity and temperature profile. An experimental investiga- 
tion on turbulent heat transfer in a circular tube with variable 

circumferential heat flux was reported by Black and Sparrow 

[3]. The temperature solutions in thermal entrance region 

for slug and laminar flow through a tube were obtained by 
Hsu [4] for axially varying sinusoidal heat flux by applying 

Duhamel’s superposition theorem to the entrance region 

solution for a uniform wall heat flux. 

In this brief note the authors present first the temperature 

solution in the thermal entrance region for developed 

laminar flow in a tube with variable circumferential wall heat 

flux. Secondly, the temperature for arbitrary wall heat flux 

in a tube of finite length is obtained as an extension of the 

previous solution. 

FIRST PROBLEM: 

VARIABLE CIRCUMFERENTIAL HEAT FLUX 

Neglecting axial conduction and viscous dissipation the 

energy equation for incompressible developed laminar flow 

in a tube with constant fluid properties may be written as 

The boundary and initial conditions for equation (1) are 

taken as 

r=a: K~i:=q[l+ i (a,cosmB+b,sinmB)]; 
n=1 

?c=o: t=ti. 

The dimensionless form of the above equations are expressed 

as 

r* = 1: 
at* 
-= 1 + z (a,cosmB+ b,sinm@; 
8r* m=l 

x=0: t*=o. 

For the solution of equation (2) let 

t* = r,(x) + t*(r*) + t,(r*, 8) + t,(X, r*, 0). (3) 

Substituting t* in equation (2) the resulting equations can be 
written as 

(44 
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with the boundary and initial conditions 

p = 1. dt, ____ _ 1 

’ dr* ’ 
a, cos m0 + b, sin d), 

at, 
&A = 0; x = 0: t, = - (t, + t, + f,). 

Equation (4a) can be split up into two components and then 
solved for t, and t,. Equation (4b) can be solved by the 
method of separation of variables. The final solutions are 

t,=4x+Il 

t, = r*2 - 
P4 
2-m + F 

(5a) 

(5b) 

UI 
Pm 

t3 = 
cmpm 

(a, cos mf9 + b, sin me) (SC) 
??I 

m=, 

in which D and Fare arbitrary constants. 
The solution of equation (4c) satisfying the boundary and 

initial condition may be obtained by the technique of 
separation of variables and expressed as 

t, = ce - f co& eepoix 
s= 1 

- ,z, g 
c,,,,R, (a,,, cos mtJ + b, sin me) eebnfx. (6) 

The eigenfunctions R, (r*, j,) satisfy the differential 
equation 

r*‘R” + r*R nls nls - (m2 - jz,r*2 + &&r*‘) R,, = 0 (7) 

in which the derivatives are with respect to r*. It may be 
noted that for m = 0, the above leads to an equation solved 
earlier by Siegel et al. [5] for constant heat flux at the 
boundary. The eigenvalue equation is obtained by satis- 
fying the boundary condition for t,, so that 

R:, (1, B,) = 0. (8) 

Combining equations (5a), (5b), (5~) and (6) the final solution 
of the problem may be expressed as 

cu 
r*4 

t*=4X+r*‘--++A 
4 c 

f(am cos m0 

WI=1 
m m m 

+ b, sin me) - 
c 

coSRo, e -st.x _ 

cc 
c,,R, 

J= 1 In=1 s=o 

x (a,,, cos m0 + b, sin me) e-flasx (9) 

It has been proved in [7] that to satisfy the initial condition 
for t, we must have 

I 

*= -24’ 

2 
cnu = B @R,(r*, /?) ‘*=I 

(form > 0) 

M aF*ap 8=8,,_ 

The non-dimensional wall temperature is obtained from the 
temperature solution (9) by substituting r* = 1. This may 
be written as 

a 

t: = 4x + ; + 
c 

k (a, cos mB f b, sin me) 

m=, 
I) m (0 

- c ~~~~~~ (1, I%,,) e- sisx - cc GJL (1, Bm) 
s= 1 m=1 s=o 

(a, cos m0 + b, sin me) e- LX (10) 

The expression for local Nusselt number based on difference 
of wall temperature and bulk mean temperature is found 
to be 

Nu = 

2[1 + 2 (a,cosmB + b,sinm@] 

PII= 

11, 
24 c 

A (a, cos me + b, sin mtl) 

!?I=, 
T 

_ 1 cOsROa (1, Bd e- aisx 
r=, 

m OJ 

- cc ~8, (1, Ad (a, ~0s me 
In=1 s=o 

+ b, sin me) e- LJ (11) 

To evaluate wall temperature or Nusselt number from 
equation (10) or (11) up to fifth harmonic terms /?,, and 
c,,R, (1, B,,) were calculated by a 7044 IBM digital com- 
puter and are reported in Tables 1 and 2. The higher eigen- 
values and the corresponding coefficients may be evaluated 
within one per cent accuracy by W.K.B. approximation 
method due to Sellars et al. [6] and are given by 

& = 4s + 2m + 4, c,,R, (1, B,,) = 240 1429 ,Q,,,-‘. 

The derivation of the two equations above is detailed in [7]. 

Tuble I. Eiyenvuluea ojrquation (8) 

0 0.0000 2.8846 5.0676 7.2302 9.3792 
1 5.0675 7.1183 9.1576 11.2076 13.2723 
2 9.1576 11.1789 13.1972 15.2212 17.2549 
3 13.1972 15.2093 17.2202 19.2344 21.2546 
4 17.2202 19.2282 21.2355 23.2448 25.2585 
5 21.2355 23.2412 25.2466 27.2537 29.2584 

P 55 

1 I.5099 
15.3490 
19.2994 
23.2828 
27.2774 
31.2931 
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0 - 0.6699 0.2354 0.1108 @OS85 0.0328 

: 0.1987 0.0692 0.1108 0.0492 0.0727 0.0374 0.0510 0.0293 0.0364 0.0236 0.0269 0.0193 
3 0.0365 0.0287 0.0233 0.0194 0.0169 0.0158 
4 DO230 0.0191 0.0162 00139 0.0112 0.0120 
5 0.0160 0.0137 0.0119 0.0104 0.0099 0.0079 

Without considering any general peripheral heat flux, 
to study the effects of first and second harmonic heat fluxes 
separately compared to constant heat flux case a variation 
of 20 per cent over average heat flux is considered in each 
of the following examples : 

case (i) 4 = q(l + 0.2 cos 0) 

case (ii) 4 = q(l + 02 cos 20). 

The nondimensional wall temperatures and Nusselt 
numbers are plotted graphically for these two particular 
cases in Figs. 1-3. The following effects of the two harmonic 
heat fluxes are observed from these curves : 

(i) The wall temperature is high where the heat flux is 
greater than the average heat flux and vice-versa. 

(ii) The first harmonic heat flux has a much greater effect 
on the wall temperature and Nusselt number than the 
second harmonic heat flux other conditions remaining 
unaltered. 

12- Lammar flow through 
o tube 
- q=q (Ii0 2 cos e I 

/o- --q=~(l+o~2cos 28) 

Constant heof flux 

compared to higher harmonics. Moreover, it is interesting 
to note from the expression for wall temperature that 
exponential damping for the first harmonic term is relatively 
slower. Consequently, the difference between tube wall and 

Laminor flow through 
a tube, first harmonic 
q=if (I+0 2 cos 8) 

Constant heat flux 

Maximum heoting 
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FIG. 2. Nusselt number vs. axial distance for laminar flow 
through a tube. 

Lamlnar flow through 
0 lube, second hormomc 
o=Q II+0 2 cos 28) 

FIG. 3. Nusselt number vs. axial distance for laminar flow 
through a tube. 

FIG. 1. temperature vs. axial distance for laminar flow 
through a tube. 

bulk mean temperature 
co-ordinate 

It may be from equations (10) and (11) by 0 when first harmonic term is present in wall heat flux 
examining the coefficients of harmonic terms with the help thereby a rise and fall of local Nusselt number as 
of Tables 1 and 2 that for same amplitude the first harmonic in Fig 2. Due to slow damping of first harmonic term the 
has greater effect on wall temperature 
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longer than for case (ii) or for constant heat flux at the 
boundary. 

SECOND PROBLEM : 
ARBITRARY WALL HEAT FLUX 

The solution for an arbitrary wall heat flux distribution 

q = ij(X)[l + $I{a.(X) cos m0 + b,,,(X) sin me)] 

can be obtained in this case by applying Duhamel’s super- 
imposition theorem on the solution expressed by equation 
(9). The final result can be expressed in the form 

in which 

{I,, (X)cos m0 + Zmnsa(X) sin me} (12) 

Z,,(X) = j g(X) dX Z,,(X) = i q(X) eoisx d X 
0 0 

I,,&X) = i a(X) a,(X) eatzxdX 
0 

Zmsb(X) = j G(X) b,(X) ca’mSxdx. 
0 

I. 

2. 

3. 

4. 
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NOMENCLATURE 
thermal diffusion coefficient ; 
specific heat ; 
convective heat-transfer coefficient ; 
thermal conductivity of solidified material ; 
latent heat of fusion ; 
temperature ; 
dimensionless temperature ; 
position co-ordinate ; 
dimensionless co-ordinate ; 
thickness of frozen layer ; 
thickness of frozen layer at steady state ; 
modified time ; 
time ; 
density ; 
Biot number. 

Subscripts 

f > at freezing temperature ; 
1, liquid phase of solidifying material ; 
a, steady state ; 
w, wall. 

INTRODUCTION 

RECENTLY there have been some attempts by several authors 
[14] to produce a closed yet simple relation giving the 
freezing rate of a warm liquid. Most of the solutions avail- 
able are cumbersome and involve extensive computations. 
Below, we give a new analytical solution which is in a 
closed form and easy to use in practical situations. 


